Unravelling the Secrets of Mycobacterial Cidality through the Lens of Antisense
نویسندگان
چکیده
One of the major impediments in anti-tubercular drug discovery is the lack of a robust grammar that governs the in-vitro to the in-vivo translation of efficacy. Mycobacterium tuberculosis (Mtb) is capable of growing both extracellular as well as intracellular; encountering various hostile conditions like acidic milieu, free radicals, starvation, oxygen deprivation, and immune effector mechanisms. Unique survival strategies of Mtb have prompted researchers to develop in-vitro equivalents to simulate in-vivo physiologies and exploited to find efficacious inhibitors against various phenotypes. Conventionally, the inhibitors are screened on Mtb under the conditions that are unrelated to the in-vivo disease environments. The present study was aimed to (1). Investigate cidality of Mtb targets using a non-chemical inhibitor antisense-RNA (AS-RNA) under in-vivo simulated in-vitro conditions.(2). Confirm the cidality of the targets under in-vivo in experimental tuberculosis. (3). Correlate in-vitro vs. in-vivo cidality data to identify the in-vitro condition that best predicts in-vivo cidality potential of the targets. Using cidality as a metric for efficacy, and AS-RNA as a target-specific inhibitor, we delineated the cidality potential of five target genes under six different physiological conditions (replicating, hypoxia, low pH, nutrient starvation, nitrogen depletion, and nitric oxide).In-vitro cidality confirmed in experimental tuberculosis in BALB/c mice using the AS-RNA allowed us to identify cidal targets in the rank order of rpoB>aroK>ppk>rpoC>ilvB. RpoB was used as the cidality control. In-vitro and in-vivo studies feature aroK (encoding shikimate kinase) as an in-vivo mycobactericidal target suitable for anti-TB drug discovery. In-vitro to in-vivo cidality correlations suggested the low pH (R = 0.9856) in-vitro model as best predictor of in-vivo cidality; however, similar correlation studies in pathologically relevant (Kramnik) mice are warranted. In the acute infection phase for the high fidelity translation, the compound efficacy may also be evaluated in the low pH, in addition to the standard replication condition.
منابع مشابه
Polyphosphate Kinase from M. tuberculosis: An Interconnect between the Genetic and Biochemical Role
The enzyme Polyphosphate Kinase (PPK) catalyses the reversible transfer of the terminal γ-Pi of ATP to form a long chain Polyphosphate (PolyP). Using an IPTG inducible mycobacterial vector, the vulnerability of this gene has been evaluated by antisense knockdown experiments in M. tuberculosis. Expression profiling studies point to the fact that down regulation of PPK caused cidality during the ...
متن کاملTransformation of Rapeseed (Brassica napus L.) Plants with Sense and Antisense Constructs of the Fatty Acid Elongase Gene
The biosynthetic pathways of saturated and unsaturated fatty acids consist of many steps controlled by various enzymes. One of the methods for improving oil quality is to change the fatty acid profile through genetic manipulation which requires isolation and characterization of the genes and other cis-acting elements, such as the promoter, involved in fatty acid biosynthesis. b-ketoacyl-CoA syn...
متن کاملUnravelling the Pathogenesis of Severe COVID-19 Pneumonia: Are There Possible Insights From High Altitude?
متن کامل
Effect of Helper Lipids on Stability and Transfection Activity of Lyophilized Lipoplex Formulations of Antisense and DOTAP Nanoliposomes
Survivin, an inhibitor of apoptosis protein is highly expressed in most cancers and considered as an attractive target for cancer antisense therapy. To vectorize antisense molecules, cationic nanoliposomes are generally used; however, their complexes are too instable, during shelf-life and upon exposure to blood components and extracellular matrix, to be used in-vivo. The present study a...
متن کامل